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The space–time autoregressive integrated moving average (STARIMA) model family

provides useful tools for modeling space–time processes that exhibit stationarity (or

near stationarity) in space and time. However, a more general method for routine use

and efficient computation is needed to model the nonlinearities and nonstationarities

of environmental space–time series. This article presents a hybrid framework com-

bining machine learning and statistical methods to address this issue. It uses an arti-

ficial neural network (ANN) to extract global deterministic (nonlinear) space–time

trends and a STARIMA model to extract local stochastic space–time variations in data.

A four-stage procedure is proposed for analyzing and modeling space–time series.

The proposed framework and procedures are applied to forecast annual average

temperature at 137 national meteorological stations in China. The results demonstrate

that the hybrid framework achieves better forecasting accuracy than the STARIMA

model alone. This finding suggests that the combination of machine learning and sta-

tistical methods provides a very powerful tool for analyzing and modeling space–time

series of environmental data that have strong spatial nonlinear and nonstationary

components.

Introduction

Space–time autoregressive integrated moving average (STARIMA) models have

gained widespread popularity in modeling multiple time-series data that corre-

spond to different spatial locations, which are known as space–time series. The

STARIMA model family furnishes models of different forms for space–time series

analysis: space–time autoregressive (STAR), space–time moving average (STMA),

space–time autoregressive moving average (STARMA), and STARIMA (Bennett

1975; Cliff and Ord 1975; Martin and Oeppen 1975; Pfeifer and Deutsch 1980).

This specification has been successfully applied to model space–time processes in
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many domains, such as social economics (Pace et al. 1998), transport (Kamaria-

nakis and Prastacos 2005), and image analysis (Crespo et al. 2007).

The STARIMA models, though, are based on the assumption that space–time

processes can be rendered stationary (or near stationary) in both space and time

(Bennett 1975; Martin and Oeppen 1975; Pfeifer and Deutsch 1980). However, the

application of the STARIMA models is not straightforward for environmental data

(Kamarianakis and Prastacos 2005). They are weak nonstationary series in time

because spatial structure tends to change slowly over time, as an environment

evolves. Moreover, such spatial structure exhibits strong heterogeneity and non-

linearity (Brundson, Fotheringham, and Charlton 1996; Cooper et al. 1997; Haas

1998). Thus, a more general method for routine use and efficient computation is

needed to tackle the nonlinearity and nonstationarity of space–time series, espe-

cially for environmental applications. The aim of our study is to extract nonlinear

space–time trends (or patterns) from data before describing them with a STARIMA

model. We examine this possibility by reviewing the representation and modeling

of space–time series using a STARIMA model.

Space–time modeling of environmental data

In spatial (or temporal) data analysis, a spatial (or temporal) process z can be de-

composed into two parts: a global deterministic spatial/temporal variation m, and a

local stochastic spatial/temporal variation x. The global variation refers to trends or

patterns across a study area (or within a study period). Local variation refers to more

localized spatial/temporal structures in data and is conceptualized as being super-

imposed on any geographically extensive pattern that may be present (Haining

2003; Kanevski and Maignan 2004). Therefore, we think that a space–time process

(series) can be described by

ziðtÞ ¼ miðtÞ þ xiðtÞ; miðtÞ ¼ f ði; tÞ; ð1Þ

where zi(t) represents the observation of a data series at spatial location i at time t,

mi(t) represents the space–time patterns that explain global deterministic space–time

trends, and f can be expressed as a nonlinear function having space argument i and

time argument t. The residual term xi(t) is a zero-mean space–time correlated error

that includes small-scale stochastic space–time variations. Without i, equation (1)

becomes a time-series analysis; without t, equation (1) becomes a spatial-series

analysis.

For the conventional STARIMA model, Martin and Oeppen (1975) suggest

differencing to remove a deterministic trend to satisfy the stationarity (or weak sta-

tionarity) property for a series (refer to conditions [a], [b], and [c] in equation [3]).

However, differencing is unable to remove the spatial nonlinear and nonstationary

trends in a space–time series of environmental data (De Luna and Genton 2005). An

artificial neural network (ANN) can simulate nonlinear systems by nonlinear re-

gression (Mitchell 2003). ANN has been successfully applied to a variety of sim-

ulation and estimation tasks and more recently to spatial data analysis (Kanevski
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et al. 1996; Li, Dunham, and Xiao 2003; Cheng and Wang 2008). We think that,

depending on its architecture, an ANN may also be able to capture nonlinear

space–time trends at different scales, shedding light on modeling nonlinear space–

time trends in a space–time series. Therefore, we use an ANN to develop a non-

parametric and robust model to extract the global deterministic space–time trends

(or patterns) in a series; we then use a STARIMA specification to analyze the re-

siduals of small-scale stochastic space–time variations. Consequently, we develop

a hybrid framework.

ANN to model deterministic global space–time trends

An ANN is a mathematical model that creates a nonlinear map that links a set of

input variables to a set of output variables. An ANN is often called machine learn-

ing (Mitchell 2003), because it can learn from experience using numerical and,

sometimes, linguistic sample data. An ANN depends on both input data and the

inner structure of its model (e.g., number of neurons, hidden layers, types of con-

nections, and information flow direction). The key elements of an ANN are its

nodes, which can simulate neural synapses. In these nodes, learning algorithms

combine a linear-weighted sum of input variables through a nonlinear transfer

function (called activation function) to yield output variable(s). The conjunctive

weights are chosen by an iterative algorithm (also called a backpropagation algo-

rithm) that aims to minimize the difference between the calculated and the desired

output. Training a network, that is, choosing the network’s parameter values, or

weights, resembles nonlinear regression analysis (Haykin 1994). The global space–

time trend term mi(t) (equation [1]) can be modeled as follows:

m̂iðtÞ ¼ f
Xn

k¼1

bk f ði; tÞ þ b0

 !
; ð2Þ

where m̂iðtÞ represents the forecasting value at spatial location i at time t, which is

the output of a neural network with n input nodes (i, t); function f is a nonlinear

activation function; bk is conjunctive weight; and b0 is threshold value. This equa-

tion is trained (fitted) first by training data and then used for forecasting.

Multilayer perception (MLP) networks have the capability to undertake com-

plex mapping between inputs and outputs that enables a network to approximate

nonlinear functions. Usually, the architecture of an ANN is designed with three-

layer networks (Fig. 1), consisting of an input layer, a hidden layer, and an output

layer, which have been proved to be able to approximate an arbitrary nonlinear

system (Hornik, Stinchombe, and White 1990). The number of output layer nodes is

decided by the dimensions of an output variable. The input layer nodes are deter-

mined by the dimensions of an input variable related to the output variable. Cross-

validation is usually carried out to determine the optimal number of hidden nodes

because it has been proved to be the most effective approach (Mitchell 2003).
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STARIMA to describe local stochastic space–time processes

The principle of the STARIMA model

The STARIMA model is a space–time model that expresses each observation at time

t and location i as a weighted linear combination of the previous observation at

location i (a time lag) and neighboring observations lagged in space. In this study, a

STARIMA model describes the local stochastic variations of the error term xi(t) in

equation (1) as follows:

xiðtÞ ¼
Xp

k¼1

Xmk

h¼0

jkhW ðhÞxiðt � kÞ �
Xq

l¼1

Xnl

h¼0

ylhW ðhÞeiðt � lÞ þ eiðtÞ; ð3Þ

where p is the autoregressive order, q is the moving average order, mk is the spatial

order of the kth autoregressive term, nl is the spatial order of the lth moving average

term, jkh is the autoregressive parameter at temporal lag k and spatial lag h, ylh is

the moving average parameter at temporal lag l and spatial lag h, W(h) is the N � N

matrix of weights for spatial order h(W (0) 5 I ), and ei(t) is a normally distributed

random error at time t and location i with the following properties:

(a) E[ei(t)] 5 0,

(b) E eiðtÞejðt þ sÞ0
� �

¼ s2I; i ¼ j; s ¼ 0;

0; i 6¼ j; s 6¼ 0;

�
(c) E ½xiðtÞeiðt þ sÞ0� ¼ 0; for ðs > 0Þ.

Figure 1. Structure of the implemented ANN model. In the MLP network, inputs consist of

spatial coordinates x (longitude), y (latitude), and time coordinate t. Six hidden nodes are

used for the hidden layer, and the output is the annual average temperature at each spatial

location at time t. Training data were organized as a sample, the length of which is 137 � 42,

and there are 137 outputs at each time t, which represent annual average temperature fore-

casts at the 137 stations.
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Property (a) means that the expectation of ei(t) is 0. Property (b) means that the

ei(t) are pairwise independent for all pairs of locations in a data set and that all

locations have the same underlying variance s2. Property (c) means the ei(t) are

independent of the raw data set. This STARIMA model can be written as STA-

RIMA(p, q), or STARIMA(p, mk(k 5 1, p), q, n1(1 5 1, q)) as p, mk, q, and n1, defined in

equation (3).

The Box–Jenkins three-step estimation procedure

The procedure adopted to operationalize a STARIMA model is commonly known as

the Box–Jenkins method (Pfeifer and Deutsch 1980; Box, Jenkins, and Reinsel

1994), which includes three essential steps:

Model identification: The autoregressive order p and the moving average order

q are chosen provisionally after an examination of space–time partial autocorrela-

tion functions (ST-PACF) (that cut off after p lags in time, and each with mk [k 5 1, p]

lags in space) and space–time autocorrelation functions (ST-ACF) (that cut off after q

lags in time, and each with nl [l 5 1, q] lags in space).

Model estimation: The model parameters j and y are estimated. STARIMA(p, q)

models with q 6¼0 are nonlinear in form. Accordingly, parameter estimation is per-

formed using a variety of nonlinear optimization techniques such as nonlinear

least-square estimation. Although, theoretically, maximum likelihood estimation

(MLE) is best, conditional MLE is used due to lack of prior knowledge to initialize

the starting values of MLE (Pfeifer and Deutsch 1980).

Diagnostic checking: The residuals of a fitted model need to be evaluated to

determine whether the candidate STARIMA model adequately explains any re-

maining small-scale stochastic space–time variations. These residuals should be

white noise, implying that the mean of the ST-ACF for these residuals essentially

should be zero and that the variance should be close to [N(T� s)]� 1. In addition,

the statistical significance of the estimated parameters should be checked based on

asymptotic confidence intervals. Any estimated parameters that prove to be statis-

tically nonsignificant should be removed from a candidate STARIMA model spec-

ification, and the resulting simpler model should be considered the preferable

specification. This iterative procedure should be repeated until all parameters are

statistically significant and the residuals display their assumed properties (Pfeifer

and Deutsch 1980).

The spatial weight matrix

In conventional STARIMA analysis, a spatial weight matrix is defined based upon

regular spatial hierarchical orders, and equal weights are assumed for the hth order

neighbors (Martin and Oeppen 1975; Pfeifer and Deutsch 1980). Building hierar-

chical spatial orders for environmental data is impracticable because they have

nonlinear and nonstationary spatial trends and stronger spatial correlation, and they

are anisotropic and irregularly sampled. Exploratory identification of the spatial

hierarchical orders and equal weights is hampered by (1) the computational costs of

ST-ACF and ST-PACF becoming enormous, and (2) spatial lag order mk or n1 at
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each temporal lag of a STARIMA model being difficult to determine. Thus, only the

first-order spatial lag effect is considered for the points that lie within a prespecified

distance threshold (see Table 1, the maximum range).

While an autoregressive model (such as the STARIMA) specification involves

the inverse covariance matrix, a semivariogram model specification involves the

covariance matrix itself (Griffith and Csillag 1993). Thus, we use a semivariogram

model to specify the STARIMA model because the two models are almost identical

in terms of the autocorrelation structure and variance.

In this study, experimental results show that the Gaussian semivariogram

model achieves the best fit, and hence it was selected for analysis purposes. The

Gaussian model is defined as (Isaaks and Srivastana 1989)

gðhÞ ¼ C0 þ C ½1� e�3ðh=DÞ2 �; 0 < h � D;

gðhÞ ¼ C0 þ C ; h > D;

gð0Þ ¼ 0; h ¼ 0;

8><
>: ð4Þ

where h is the spatial lag distance, C is the partial sill (or the spatial heterogeneity

arising from spatial autocorrelation), C0 is the nugget (or the spatial variability aris-

ing from random components such as measured error and stochastic noise, or

model misspecification error), and C1C0 is the sill or sample variance. C0/sill in-

dicates the percentage of the spatial heterogeneity caused by the stochastic factor to

the total spatial heterogeneity. D is the effective range. That is, the measurement

points estimated within the range are spatially autocorrelated, whereas points out-

side the range are considered independent.

Spatial weights are defined between two points as

W ðhÞ ¼ ðC0 þ C1Þ � gðhÞ½ �=ðC0 þ C1Þ; h � D;

W ðhÞ ¼ 0; h ¼ 0 or h > D:

�
ð5Þ

Table 1 Fitted ANN Residuals’ Isotropic Semivariogram Analysis

Range (km) Partial sill (C) Nugget (C0) Sill (C01C) C0/sill (%)

1951 1715.3 10.129 7.872 18.001 43.731

1955 1201.7 9.717 4.19 13.907 30.129

1960 1275.7 7.287 2.911 10.198 28.545

1965 1279.0 8.756 3.02 11.776 25.645

1970 1226.5 7.16 2.948 10.108 29.165

1975 1265.9 7.22 2.988 10.208 29.271

1980 1464.5 8.601 1.631 10.232 15.940

1985 1469.7 9.352 1.766 11.118 15.884

1990 1296.1 7.345 3.059 10.404 29.402

1992 1446.6 8.702 1.706 10.408 16.391
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A hybrid framework for the integrated modeling of space–time series

Fig. 2 shows the hybrid framework for integrated space–time modeling and fore-

casting, which comprises four stages: space–time data preparation, exploratory

space–time analysis, model training, and model validation.

In the space–time data preparation stage, outliers in a data set should be de-

tected and dealt with in some meaningful way. Anomaly detection can be done by

histogram analysis and descriptive statistics analysis of the time series at each spa-

tial location. Although transformation of data could be used to accommodate the

anomaly, removing outliers from a data set is often one of the options when outliers

lie far outside the range of the remaining data. Then a data set should be split into

two groups: one as a sample set (usually 80% of the data) to train a model, and one

as a validation set (usually 20% of the data) to test the model.

An exploratory space–time analysis may be used to diagnose whether data

satisfy modeling conditions of STARIMA parameter estimation by examining plots

of spatial surface trend and time-series ACF to check whether the data are station-

ary. Otherwise, an ANN model can be fitted to the data to capture nonlinear

deterministic space–time trends.

In the model training stage, an ANN may be applied to extract global space–

time trends, and then the ANN residuals (ANN-fitted values subtracted from

observation values) are examined using semivariogram analysis. If they are uncor-

related, the ANN successfully describes all space–time structures represented in

the raw data. Otherwise, the STARIMA model should be fitted to the residuals to

account for the correlations. Then the spatial weight matrix can be defined, and

the Box–Jenkins three-step procedure may be applied to train/fit the STARIMA

model.

In the model validation stage, space–time forecasts are constructed from the

sum of the ANN and STARIMA estimates (see equation [1]). The ST-ACF of the

residuals of combined estimates may be calculated for further diagnostic checking,

such as whether the residuals are random and normally distributed. Furthermore, to

help understand the quality of results, a variogram-based analysis may be per-

formed at each step to evaluate the spatial and temporal variability as a model is

built. If no spatial correlation exists between residuals, then the (C0/sill) ratios are

close to 100%. In other words, nugget value C0 is close to the sill variance C01C.

The overall performance of a space–time modeling exercise is evaluated by its

prediction accuracy.

A case study: Annual average temperature across China

This section presents a case study to illustrate the four-stage procedure affiliated

with the hybrid model. The purpose of this case study is to test the difference be-

tween a hybrid model (ANN1STARIMA) and its ordinary STARIMA model by fore-

casting annual average temperature (degree/year) across China.
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Data preparation

The original data are T 5 52 year observations (1951–2002) of annual average

temperature at N 5 194 national meteorological stations provided by the National

Space–Time
Data preparation  Outlier detection and data split

Start

No

Yes

No

ANN to capture the global
deterministic space–time patterns

Are ANN residuals correlated

STARIMA to model the small-scale (or local)
stochastic space–time variances

ANN Fitted + STARIMA Fitted

Exploratory Spatial Analysis

Are data correlated?

YesExploratory
ST Analysis Time Series Analysis

Are data nonstationary?

No

Yes

Model Training 

Are residuals white noise
approximately?

No

ANN Predicted + STARIMA Predicted

Yes

Model Validation
Performance evaluation

End

Figure 2. A hybrid framework for integrated space–time modeling of environmental data.
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Meteorological Centre of the People’s Republic of China. Among these 194 stations,

137 observations were retained because the measurements at the remaining

57 stations may cause misspecification of the model (43 stations have only two

years of observations, and another 14 stations have extreme outliers). The areas

without qualified observation stations are highlighted by symbol ‘‘X’’ in Fig. 3

and in other figures. The data between 1951 and 1992 (nearly 80% of 52 years)

were chosen as the training data set for the forecasting between 1993 and 2002

(nearly 20% of the 52 years). This completes the two steps of the first stage of the

analysis procedure.

Exploratory space–time analysis

Time-series analysis and spatial data analysis methods were used separately to ex-

amine whether the data were correlated and stationary in time and space. Fig. 3b

shows the annual temperature in Beijing with a clearly increasing trend. After first-

order differencing, it becomes a stationary series in time (Fig. 3c), indicating it is a

weak stationary series in time. A similar pattern can be found in the data for other

stations. To discover the spatial pattern, a spatial trend analysis was conducted, and

pattern maps of annual average temperature were generated using kriging (Fig. 4).

Two spatial trends are detected in these maps: a decreasing spatial trend from the

southeast to the middle north and an increasing spatial trend from the middle north

to the northwest, indicating that the trend surface is spatially nonlinear and non-

stationary. Fig. 5 presents the standard error map for the trend portrayed in Fig. 4:

estimates in the southwest of the study area have larger deviations than those in

southeast and northeast, due to the relative scarcity of national stations in the areas

Figure 3. Meteorological stations used for the space–time series analysis in the case study: (a)

spatial locations of the remaining 137 stations. The areas that are not covered by the 137

stations (such as Tibet and southwest China) are highlighted by symbol ‘‘X’’ here and in Figs.

4–6, 9, and 10; (b) time series of annual average temperature in Beijing (1951–2002), which

shows an increasing trend line; (c) time series after first-order differencing of data in Fig. 3b,

which does not display a trend.
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highlighted by ‘‘X.’’ We included these areas purely for visualization effect and, in

fact, excluded them from the analysis because we used observed rather than in-

terpolated (kriged) values when estimating parameters of the ANN and STARIMA

models. Moreover, we did not use the temperature data of provincial monitoring

stations to improve the number of points, because those data are not as precise and

reliable as data from the national meteorological stations. These considerations led

us to use ANN for our space–time trend modeling, completing the exploratory

space–time analysis task of stage 2.

An ANN model to predict deterministic space–time trends

An ANN model is implemented with an MLP network of three input nodes (coor-

dinates of x, y, and t), one hidden layer, and one output node (see Fig. 1). Cross-

validation is performed to select the optimal number of hidden nodes, and six hidden

nodes were chosen based on a best-fit value. Here time t is relative time rather than

absolute time (year), for computational convenience. The relative time is defined as

tj ¼ 1þ j=n ðj ¼ 1; 2; � � � ; nÞ ; ð6Þ

where n represents the total sequence length T. Input data were normalized to a

specified range [�1, 1]. The sigmoid function was chosen as the activation function

Figure 4. Spatial patterns of annual average temperature in different years. The annual av-

erage temperature is high in the southeast and low in the northwest of the study area.
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in the hidden layer and the output layer to implement nonlinear transformation

within the output range of [�1, 1].

Training data set analysis was performed on a 3.4 G MHz HP workstation and

required 8 s of central processor unit time. The fitted results for 1970, 1980, and

1990 are presented in Fig. 6, which shows that the ANN model captured nonlinear

deterministic space–time trends. These maps are very similar and indicate

Figure 5. Kriging standard error maps for different years. The southwest part of the study area

has larger deviations than the southeast and the northeast due to relatively few national sta-

tions in Tibet and in the desert areas of Sinkiang (Fig. 3a).

Figure 6. Nonlinear space–time trends captured by the ANN model. Fitted values in years

1970, 1980, and 1990. The three maps are very similar, indicating that the global deter-

ministic space–time variation structures appear to be fairly stable over time. Besides, the

predicted values in year 2002 displays similar patterns as in the three fitted years. These maps

also show that low-temperature areas are decreasing, and high-temperature areas are in-

creasing, indicating that the annual average temperature increased slightly over time.
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that the global deterministic space–time variation structures appear to be fairly

stable over time. We also find that low-temperature areas are decreasing and that

high-temperature areas are increasing, which indicates that the annual average

temperature in the entire study area increased slightly over time.

The semivariogram analysis of the ANN model residuals exhibits weak anisot-

ropy, which shows that the strong anisotropy in the original data (Fig. 4) is largely

removed (Fig. 6) after global nonlinear space–time trends are extracted by the ANN

model. Results reported in Table 1 indicate that the C0/sill ratios for all years are

o50%, indicating that the ANN model residuals have strong correlations and that a

STARIMA model is needed as part of specification.

The STARIMA model/description of small-scale to capture stochastic

space–time variances

Here we use STARIMA to capture the small-scale stochastic space–time variances

by following Box–Jenkins three-step modeling procedure.

(1) Building the spatial weight matrix: The means of the partial sill (C1 5 3.86),

nugget (C0 5 6.57), and isotropic range (D 5 1467.02) (Table 1) were used to define

a 137 � 137 row-standardized spatial weight matrix for the STARIMA model (see

equation [5]). Although misspecified distances lead to biased results and spatial

heterogeneity (Tiefelsdorf 2003), here Euclidean rather than spheroid distance has

been used to define the spatial weight matrix since the formulas for semivariogram

and inverse distance weighting (IDW) interpolation analysis are only valid for pla-

nar surfaces in ArcGIS (the package we used for the spatial analysis: since con-

ducting this research, IDW has become possible for spheroids using R).

Furthermore, the difference between these two distance measures is o1% in the

geographic coordinate system UTM_WGS_1984. We think the discrepancy be-

tween the Euclidean and great circle distance measures is acceptable within the

distance range threshold (D) of 1467 km.

(2) Training/fitting a STARIMA model: Here we follow the Box–Jenkins three

steps to fit a STARIMA model. Fig. 7 presents ST-ACF (Fig. 7a) and ST-PACF (Fig. 7b)

correlograms for the ANN residuals. The ST-ACFs (the moving average part, q) cut

off at the first temporal lag for spatial lag zero and one; the ST-PACFs (the auto-

regressive part, p) appear to tail off at the first and second temporal lags for spatial

lags zero and one. We hereby select the following STARIMA(2, 1) specification as

the candidate model:

xiðtÞ ¼ f10xiðt � 1Þ þ f11W ð1Þxiðt � 1Þ þ f20xiðt � 2Þ þ f21W ð1Þxiðt � 2Þ
� y10eiðt � 1Þ � y11W ð1Þeiðt � 1Þ þ eiðtÞ:

ð7Þ

The parameter estimations for equation (7) are calculated with nonlinear least

squares implemented in MATLAB 7.0. Table 2 tabulates the parameter estimates

and their 95% confidence intervals; ŷ10 and ŷ11 are not statistically significant when

the confidence level is set to 0.95. This result implies that these two parameters

should be removed from equation (7). After reestimating, the reduced model, STAR
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(2, 0), was considered:

xiðtÞ ¼0:7023xiðt � 1Þ þ 0:2296W ð1Þxiðt � 1Þ þ 0:2624xiðt � 2Þ
þ 0:0538W ð1Þxiðt � 2Þ þ êiðtÞ;

ð8Þ

where êi(t) is the estimated value for ei(t).

(3) Diagnosis: Residuals for the STARIMA model are further assessed by eval-

uating its ST-ACF correlogram (see Table 3), whose mean (0.0017) and variance

(0.00027) are close to the expected mean of zero and variance of

[N(T� s)]� 1 5 0.0002 (here T 5 42, N 5 137, and s 5 2). This result indicates that

the candidate STARIMA model captures the majority of the small-scale stochastic

space–time variances in the ANN residuals. Through computation of the fitted re-

sults of the STARIMA model plus of the ANN fitted results (see equation [1]), we

obtain the fitted results of the hybrid model from 1953 to 1992, completing stage 3

of the procedure.

Model validation

The final stage is validation of the hybrid model. Only one-step-ahead forecasting is

considered. The root mean squared error (RMSE) is selected as the forecasting
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Figure 7. (a) ST-ACF and (b) ST-PACF correlograms for the hybrid model. Bars indicate the

space–time autocorrelation and partial function value at time lags 1–10 and space lags zero

and one, and transverse lines show the approximate 95% upper and lower confidence

bounds, indicating that the space–time autocorrelation (a) and partial function (b) values are

considered approximately zero.
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accuracy measure. Fig. 6 shows nonlinear space–time trend maps for forecasting in

the year 2002. Compared directly with the results from other years shown in Fig. 6,

we find that the areas that have higher annual average temperatures continue to

increase.

Although direct comparisons are not possible between hybrid STARIMA and

ordinary STARIMA, we use an ordinary STARIMA model as a benchmark to dem-

onstrate the effectiveness of the formulated hybrid model. We used the data after

first-order differencing (which removes the trend in time, as shown in Fig. 3c) to be

fitted with an ordinary STARIMA model. We did not implement higher-order differ-

encing or multipolynomial STARIMA models because calibration of the parameters

is far too complicated and no literature exists about such STARIMA models.

The ST-ACF and ST-PACF correlograms for the ordinary STARIMA model are

portrayed in Fig. 8, which indicates that the ST-ACFs (Fig. 8a) cut off at the second

temporal lag for spatial lags zero and one, implying a moving average order q 5 2,

and that the ST-PACFs (Fig. 8b) tail off at the first temporal order for spatial lags zero

and one, implying an autoregressive parameter p 5 1. Thus, the following STA-

RIMA(1, 2) specification is regarded as the candidate model:

xiðtÞ ¼f10xiðt � 1Þ þ f11W ð1Þxiðt � 1Þ � y10eiðt � 1Þ � y11W ð1Þeiðt � 1Þ
� y20eiðt � 2Þ � f21W ð1Þeiðt � 2Þ þ eiðtÞ:

ð9Þ

Results summarized in Table 4 reveal that ĵ11 and ŷ11 are statistically nonsig-

nificant. Therefore, the ordinary STARMA model is revised to the following form:

xiðtÞ ¼ � 0:4096xiðt � 1Þ þ 0:1982êiðt � 1Þ � 0:042êiðt � 2Þ
� 0:0594W ð1Þêiðt � 2Þ þ êiðtÞ:

ð10Þ

The residuals of the predictions from the ordinary STARIMA model closely

mimic a normal distribution (Table 5), indicating that the model efficiently de-

scribes the small-scale space–time variances.

Table 3 Space–Time Autocorrelations (ST-ACFs) for the Hybrid Model Residuals

Space lag (h)

Time lag (k) 0 1

1 0.02925 0.02138

2 0.01424 � 0.02198

3 � 0.01111 � 0.01897

4 0.00969 � 0.01759

5 � 0.00786 0.01651

6 � 0.00259 0.01138

7 � 0.00183 0.00941

8 0.00152 0.00752

9 � 0.00128 � 0.00911

10 0.00079 0.00388
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Fig. 9 presents the prediction maps for the hybrid model and the ordinary STA-

RIMA model, and Fig. 10 compares the forecast results from these two models. Table 6

summarizes their accuracy measures using RMSE. Alternatively, we may also use re-

sampling techniques to estimate prediction variance of the hybrid model.

Results reported here show that the hybrid framework largely improves the fit-

ted and slightly improves the forecasting accuracy obtained with the ordinary STA-

RIMA model. In addition, the RMSE errors of both the hybrid and the STARIMA

models become increasingly large over time. As portrayed in Fig. 10, in 1993 the

forecasting maps of both models are close to the actual map (Fig. 4), but in 1997

and 2002, they deviated noticeably from the actual maps. This indicates that their

performance in the short term is better than that of metaphase and long-term fore-

casting for the two models.

To compare further the modeling ability of the hybrid model with the ordinary

STARIMA model vis-à-vis spatial heterogeneity or nonstationarity, both models’

residuals were analyzed using the Gaussian semivariogram function. We can see

that the sill variances of both models’ residuals for all years sharply decrease, from a

maximum of 18.001 in Table 1 to a minimum of 0.0665 in Table 7, which shows

that both models explain most of the variance in the space–time series. But the sill

variances of the hybrid model residuals (Table 7) are smaller than those of the

STARIMA model residuals. In addition, the C0/sill ratios of the hybrid model are

close to 50%, indicating that their residuals have weaker spatial correlation than
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Figure 8. ST-ACF (a) and ST-PACF (b) correlograms for the ordinary STARIMA model.
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those for the ordinary STARIMA model, for which the C0/sill ratios were between

32.97% and 39.44%. This finding also implies that the hybrid model has a better

explanatory capacity than the STARIMA model for spatial heterogeneity and non-

stationarity. The reason for this may be that the nonlinear space–time trends in

environmental space–time series data are better modeled by an ANN. This finding

also explains why the hybrid model improves prediction accuracy only to a certain

extent, and, in this case, not to a great extent.

Table 5 Space–Time Autocorrelations (ST-ACFs) for the Ordinary STARIMA Model Residuals

Space lag (h)

Time lag (k) 0 1

1 0.0302 � 0.0790

2 � 0.2877 � 0.1752

3 � 0.0223 � 0.0503

4 0.0625 0.0280

5 � 0.0154 � 0.0240

6 � 0.1179 � 0.1544

7 0.0909 0.1665

8 0.0794 0.0817

9 � 0.0461 � 0.0745

10 � 0.0681 � 0.0710

Figure 9. Comparison of the fitted results produced by (a) the ordinary STARIMA model and

(b) the hybrid model.
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Conclusions and discussion

A hybrid model is developed in this article to describe a space–time series of

environmental data exhibiting strong spatial and/or temporal nonlinearity

and nonstationarity. This model can be considered part of a semiparametric

method, because it combines a data-driven ANN model, used to extract nonlinear

deterministic space–time trends, with a STARIMA model, to account for stochastic

−6.9 −3.6 −0.6 2.6 5.7 8.9 13 16 19 22 25

Annual Average Temperature

200219971993

(b)

(a)

Figure 10. Comparison of the forecasting results produced by (a) the ordinary STARIMA

model and (b) the hybrid model.

Table 6 Accuracy Measures for the Fitted and Forecasting Results

Hybrid STARIMA Accuracy improved

RMSE RMSE %

Fitted

1970 0.385 1.762 78.13

1980 0.489 1.894 74.17

1990 0.677 1.97 65.55

Forecasting

1993 0.615 0.649 5.24

1997 3.086 3.377 8.62

2002 6.703 7.728 13.3
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space–time variations. Although this is an ad hoc approach, the significance of such

a framework is fourfold:

(1) First, unlike most frameworks, which are either spatially or temporally dom-

inated, or first separated and then combined linearly (Li, Dunham, and

Xiao 2003; Cheng and Wang 2008), this hybrid model furnishes an inte-

grated specification that handles both space and time simultaneously and

seamlessly.

(2) Second, a four-stage procedure is proposed for analyzing and modeling

space–time series of environmental data that includes data preparation, ex-

ploratory space–time analysis, model training, and model validation. In par-

ticular, the exploratory space–time analysis is discussed systematically, as are

the methods used to explore space–time stationarity, the spatial and temporal

correlations, and the validity of formulated models, all of which can be used

as a guideline and as the first step in all space–time analysis.

(3) Third, one artificial network model, the MLP network, was applied to model

global deterministic space–time structures, solving the problem of spatial non-

linearity and nonstationarity for conventional statistical methods, while also

extending the ANN application from spatial analysis to space–time modeling.

(4) Fourth, using a semivariogram to define a spatial weight matrix largely en-

ables the STARIMA model to: (i) analyze space–time series that are contin-

uous in space; (ii) calibrate spatial heterogeneity and local nonstationarity in

environmental data; and (iii) accommodate spatial autocorrelation in different

directions.

However, the designed ANN model cannot capture all deterministic space–

time structures, and the candidate STARIMA model does not necessarily fully

Table 7 Comparison of the Residuals Via Isotropic Semivariogram Analysis

Range (km) Partial sill (C) Nugget (C0) Sill (C01C) C0/sill (%)

Hybrid

1970 1052.3 0.0541 0.0544 0.1085 50.12

1980 1013.4 0.0919 0.0903 0.1822 49.57

1990 1125.2 0.1301 0.1203 0.2504 48.05

1993 1160.3 0.0382 0.0283 0.0665 42.56

1997 1314.1 0.1443 0.1311 0.2754 47.60

2002 1234.2 0.2189 0.1698 0.3887 43.68

STARIMA

1970 1119.7 2.9511 1.9219 4.8730 39.44

1980 1121.9 2.7705 1.6728 4.4433 37.65

1990 1369.7 2.6279 1.4913 4.1192 36.20

1993 1093.2 1.9458 1.1971 3.1429 38.09

1997 1511.5 2.8066 1.4771 4.2837 34.48

2002 1160.8 2.6081 1.2826 3.8907 32.97
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explain all stochastic space–time variability. Other factors may exist (such as al-

titude, humidity, wind speed, or distance from the sea) that affect degrees of tem-

perature and should be included in a model specification. For this reason, a logical

extension of the methodology would be to incorporate explanatory variables (al-

titude or humidity) into both an ANN and a STARIMA model. Furthermore, impacts

of spatial and temporal autocorrelation on an ANN is not discussed here but is

addressed in Cheng and Wang (2009), who report that considering spatial associ-

ations in the calibration of an ANN improves computational efficiency and good-

ness of fit.

With the advance in space–time series data collection, space–time data anal-

ysis theory has became increasingly popular, especially with respect to the devel-

opment of integrated space–time dynamic models that take into account the special

features of geographic space–time data, such as space–time autocorrelation, vari-

ability, and heterogeneity (Hepple 1978; Baltagi 2005; Heuvelink and Griffith

2010). The development of integrated space–time data analysis and modeling

methodology, rather than the separate processing of space and time, is indispens-

able. We think that the hybrid framework developed here represents a useful at-

tempt in this aspect. As Openshaw (1999) notes with the first sentence of the text on

his web page, ‘‘the immense explosion in geographically referenced data occa-

sioned by developments in IT, digital mapping, remote sensing, and the global

diffusion of GIS, emphasises the importance of developing data driven inductive

approaches to geographical analysis and modeling, to facilitate the creation of new

knowledge and aid the processes of scientific discovery.’’ With the advances of

data-driven inductive approaches, geographical analysis and modeling should be

able to promote the creation of new space–time data analysis and modeling meth-

odology. Thus, a space–time artificial neural network (STANN) should be devel-

oped that will be able to overcome the limits of the MLP network and the STARIMA

model specification by tackling nonlinearity and nonstationarity in space–time

series. This will be the direction of our own future research.
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